Polymer Bulletin 17, 239245 (1987) Polymer Bulletin
© Springer-Verlag 1987

Theoretical treatment of network formation
by a multistage process

K. Dusek’, B.J.R. Scholtens®*, and G.P.J. M. Tiemersma-Thoone

!Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences,
CS-16206 Prague 6, Czechoslovakia

2DSM Research, PO Box 18, NL-6160 MD Geleen, The Netherlands

SUMMARY

A general scheme for a multistage process of network formation is
formulated in which the Galton-Watson or universal consistency relation is
assumed to be valid. The scheme is elaborated with the theory of branching
processes with cascade substitution. Cyclization is postulated not to
occur, substitution effects are allowed and can be incorporated in the pro-
bability generating functions (pgf).

INTRODUCTION

Recent advances in the development of the statistical theories of
branching processes have made it possible to treat a number of complex
crosslinking processes which are of technological importance. These pro-
cesses include curing of epoxy resins (1), formation of polyurethane net-
works including possible side reactions (2,3), crosslinking of functional
polydimethylsiloxanes (4) and of urea-formaldehyde coatings (5).

Technologically very important are multistage processes in which pre-
polymers are formed in one or several stages, upon which a network is
obtained by crosslinking the functional prepolymers. Alternatively, a net-
work formed in an intermediate stage can be further modified.

In this contribution a method is formulated to describe such a
multistage process. The method is based on the statistical theory with
cascade subsitution. However, it is not limited to the statistical theory
because also stages treated by the kinetic method can be included.

APPLICABILITY OF THE STATISTICAL THEORIES

Before we treat the general scheme of a multistage process of network
formation it is necessary to analyse the applicability of the statistical
theories to real systems (cf. also Ref. 6). This applicability is limited
to situations where no long-range correlations are operative. The long-
range correlations may be due to a specific reaction mechanism such as the
substitution effect (7) or initiated polyreactions (8). If the substitution
effect is operative in units from which the networks is built up, the kine-
tic method should be used and application of the statistical theory yields
only approximate results. However, in polymer chemistry the long-range
correlations are usually interrupted by groups of independent reactivity
and, consequently, become short range (6). Thus, before applying a sta-
tistical theory it has to be realized whether the treatment is rigorous or
only yields a good approximation. The other type of long-range correla-
tions, cyclization, is not considered here.

In the branching theory with cascade substitution, the distribution of
units differing in number and type of bonds in which they are engaged is
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described by a vectorial probability generating function (pgf) Fg(z), where
the subscript 0 refers to the root of the probability tree, see e.g. refs.
(1,9). Its component Fgyx(z) is the pgf for the type and number of bonds
issuing from unit X. The components of the dummy vector z, which differ in
their subscripts, denote the various types of bonds. Another pgf, F(z),
describes the distribution of bonds issuing from a unit in generation g (g
> 0) to units in generation g+1. This pgf characterizes the propagation
ability of the system (1,9).

The formulation of z and F(z) depends on whether the formation of a
new bond is influenced by the type and state of other groups in the same
unit. Consider the following example of monomers X and Y:

a\\{;//a c\\i;//d
b d
X Y

The probability of formation of a bond between X in generation g and X or Y
in generation g+1 depends on the type of group X is connected with (rooted
in) in generation g-1. Obviously, if X is rooted in the group b, b cannot
take part in bond formation from X to a unit in generation g+1. Also, the
propagation ability depends on whether the bond extends to X or Y.
Therefore, in multifunctional systems involving units with different func-
tional groups and possibly first-shell substitution effects the subscripts
of z and F should specify the passage from one unit to another by
identifying the type of the bond, such as XacY, XbdY, XbbX, etc.. Thus, we
have in general: zyjjy and Fyjjy(z) = W~ (3Fgy/dzyjjx). The subscript of z
means a passage from unit X via an i-j bond to unit Y. Fxijy means the pgf
for unit Y rooted in unit X via an j-i bond (seen from unit Y) and & is a
normalizer.

In many systems simplifications are possible. For instance, if each
monomer has only one type of group, the type of bond is determined by the
type of group. Moreover, if no substitution effect is operative, the
Galton-Watson or universal consistency relation (9) between Fx and Fpy
(which averages the propagation ability over all possible situations):

Fyelz) = )1: aFOX(g)/azi/[,; alvox(g)/azj]Z=l (1)

is rigorous. If a substitution effect exists in one of the monomers in an
n-component (n > 3) system, the distribution of triads obtained from kine-
tic differential equations is required (10). However, the Galton-Watson
formulation appears to be a good approximation for a number of systems with
substitution effects.

In the next paragraph we present a general scheme for a multistage
process of network formation in which the Galton-Watson formulation is
assumed to be valid. This limitation is not a requirement but keeps the
formulae relatively simple. In principle the more general derivation can be
made in a similar way. In addition, cyclization or other long-range spatial
correlations are postulated not to occur. Substitution effects, however,
are allowed and can be incorporated in the pgf's.
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SCHEME OF A MULTISTAGE PROCESS

Let us consider a process for a multicomponent system in which the
monomers are converted into the final network in several consecutive
stages:

stage components
1 monomers 1
Wﬁl
products 1
2 products 1 + monomers 2
products 2

1

\
2 products £-1 + monomers £

reactions 2
products 2

We only consider situations in which the statistical methods are valid
or yield a good approximation. Our strategy is that the products of stage i
become building units in stage i+1. The mathematics are simpler when we
assume that the reactions which were possible in stage i are no longer
possible in stage i+1. This implies that the unreacted groups remaining in
the products of stage i may take part in subsequent reactions in the next
stage with newly added monomers. Throughout the process, track is being
kept of the number and type of unreacted (= free) groups by introducing
dummy variables for these, collected in the pgf vector zfg. The calculation
procedure for a multistage process is as follows:

STAGE 1
We formulate the pgf for the number of reacted (related to variable

z) and unreacted (related to zf) groups for each monomer X in stage 1 in
the zeroth generation:

(1)Fox(z: 2¢) (1-1)

and derive the pgf for unit X in the subsequent generations with (1,9):

(l)FX(Z' Zg) = f 3F x (2 zf)/azi//[§ 9F (2, zf)/azjlzzl, z (1-2)

£i
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Next, the mass fraction generating function (I)W(z. zf) is derived with

where each component of the vector z is replaced by the scalar z since we
are not explicitly interested in the distribution according to the type of
unit. The mass fraction of component X is él)mx and the mass fraction
generating function for this component is defined by

MX
=z

(z. z (Fox{(1)% Z¢)

(1)"x(% Z¢) (1-4)

in which the component (l)uY of (1)9 is given by the implicit relationship

"y

z (1-5)

% =% flo 2
Here, My and My are the molecular masses of units X and Y, respectively, and
the cascade substitution vector (jju has the components (j)juy (the coef-
ficients of z! in (1)Wx = L (1)mg z! are the mass fractions of molecules
having a molecular mass equal to I). Subseguently we want to convert

1)W(z, zf) into the number fraction generating function (1)N(z, zf),

efined by

N(z, z (1-86)

¢) Ny (1)x(%: Z¢)

I
(1) X
where ny represents the number or mole fraction of component X and
Nx(z, zf) its number fraction generating function. This (3)N(z, zf) will
be used to formulate the pgf for the next stage, in which the products of
the first stage represent the building units. The transformation of W to N
proceeds as follows:

WMz 2 = R ] L6 MR S P (1-7)

where the number average molecular mass of the product of stage 1, (I)an
is given by

. § ny MX
(' T T - i e (1)Fox/2 (1-8)
with
(1)F0X = [§ aFOX(;, gf)/azy]£=1, Ef=l . (1-9)

Next, we check whether the condition for gelation has not yet been
reached, i.e. whether eq. (1.10) is still valid:
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= det |, - r <0 (1-10)

with Gxi = 1 for i = X and zero otherwise and

i
Py = [3Fy(z, 20)/32, (1-11)

X z.=1

Finally, if we are below the gel point, we calculate the mass average
molecular mass of the products of stage 1 with

(l)Mw = [Im (1)w (z, z _f)/az] . z=1 (1-12)
X £

and the number average free functionality of type i, (1)$ni

(1)%1 = )™M= 2070245100, 5 o (1-13)

STAGE 2

The products of stage 1 are subsequently mixed with newly added mono-
mers 2 in stage 2. Together they are related to the components of the vec-
torial pgf in stage 2, (g)Eg. For the products of stage 1 the pgf reads

(Z)Fop(zu zZ ) (1) __1 —f) (2_1)
where z and zf are not the same vectors as in stage 1 because dummy
variables for the new components are added to z and zf, whereas those for
components which do not react in this stage are removed from z.

Assume a reaction between the unreacted groups Y of products P with
the newly added monomers 2. We then have to perform the following substitu-
tion in Eq. (2-1):

z (1 - ) Zey *

£y © (2-2)

(2)%vk Zx
where (2)ayg is the partial conversion of groups Y in stage 2 yielding
bonds of type YK, and zg is the variable for the newly added monomers 2
(with eq. (2-2) it is assumed that no substitution effects are present in
the monomers with the Y groups; if these are present, a modified cascade
substitution is used). Next, we derive the other components of (2)Fg and
all components of (2)E in the same way as has been done for stage 1.
Subsequently, the mass fraction generating function (2)W(z, zg) is derived
as for stage 1 but with

(2)%YK

Wplz, zg) = ()W(z, zp) (2-3)
o ) - Ll):i: 2,(w)] : E_llzgéz;_ézl e
with

Zey(Ug) = (1= (2)%x) Zey * (2)%k % (2-5)
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where the summations over K take into account the various types of monomers
2 that react with unreacted groups of product P. Again, the Galton-Watson
approximation has been used in formulating eq. (2-4). The number fraction
generating function (2)N(z, z¢) is derived in the same way as for stage 1.
Again it can be checked whether or not the condition for gelation has been
reached in stage 2. Subsequently the number and mass average molecular
masses and the number average free functionalities can be calculated in a
similar way as for stage 1, though of course all formulae become more
complex.

STAGE ¢

The products of stage 2-1 are mixed with newly added monomers £. The
vectiorial pgf's (g)go(g, zf) and (g)g(g, 2¢) are derived in a similar way
as for stage 2. The condition for gelation is checked with Eq. (1-12). If
D > 0, gelation occurs and the extinction probabilities are calculated by
solving the set of coupled nonlinear equations:

'z = (nFx{(Y (2-1)

The sol fraction is calculated with

(z= .V, z.=1) (2-2)

()% = § ()" ()Fox{Z= ()Y Z¢
The concentration of elastically active network chains depends on its defi-
nition in the particular system, but this quantity can be derived from the
following pgf:

(z =

v+ (1 1) (2-3)

Tx(z) = v)z, Zf =

(1) ()Fox'2 =(1) “(9)

which contains the probabilities for the number of bonds having infinite
continuation (i.e. ties) issuing from an X-unit in the zeroth generation.
Other quantities of interest can also be derived in a routine way, see
e.g. ref. (1).

DISCUSSION

The key transformations and operations in this scheme are the
following: the unreacted functionalities in the generating functions are
labelled and kept track of. They are transformed in the next reaction stage
by making the substitution zf = (1 - @) z¢f + @ z. In addition, the mass
fraction generating function W(z) is converted into the number fraction
generating function N(z) by integration of W(z)/z. N(z) and W(z) are used
in the following stage to formulate the new pgf's. Later it will be shown
that in a number of cases this conversion is possible by solving the
integration analytically (11).

The procedure suggested here can also be used if in one or several
steps a kinetic treatment is required. If the kinetic theory is applied,
use can be made of the simplification mentioned before (8), which implies
cutting the connections between reactive groups in such monomers that the
reactivity of the groups becomes independent. Subsequently, the structures
are generated from the resulting fragments. Finally, the broken connections
are reformed in a random way.
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